
Audio Instrument Isolation via De-Noising Auto-Encoder

Eric Boulter
B.S. Candidate in Astrophysics at the George Washington University

ericboulter@gwu.edu

Research Advisor: Alan Nash
Astrophysics Faculty Advisor: Sylvain Guiriec

Music Faculty Advisor: Dr. Douglas Boyce

Abstract
This research project is centered on develop-
ing software that can isolate individual instru-
ment signals called ”stems” from a commer-
cial level multi- instrument audio file (.wav,
.mp3) through machine learning techniques.
For example, using the song Superstition by
Stevie Wonder in this software, one could
choose to pull out only the drum signal, thus
isolating the drum from the entire song in or-
der to place it in its own audio file. This pro-
cess involves heavy data manipulation tech-
niques from signal processing, as well as an
Auto-Encoder machine learning neural archi-
tecture to effectively isolate individual instru-
ment stems. Traditionally, Auto-Encoders are
used for data compression. When the input
and output are identical, the Auto-Encoder
learns to ”encode” the data into a reduced
form and to decode the reduced form back
into its original dimensions. In this project,
the Auto-Encoder architecture is given a full
multi-instrument track as the input and an iso-
lated instrument track as the output. This con-
figuration trains the Auto-Encoder to treat all
other instruments as ”noise” in order to iso-
late a single instrument signal. Currently, the
training data used in this project is focused on
isolating drum stems from Hip Hop/R&B/Pop
Rock songs produced within the last thirty
years. The project scope will be expanded to
many more genres and instruments once the
current area is perfected. This research will
have a significant impact on the music commu-
nity in regard to ”sampling” techniques, and
it successfully demonstrates the De-Noising
capabilities of Auto-Encoder neural architec-
tures that can be applied to the field of signal
processing.

1 Introduction

There has been a lot of work previously done on
audio samples for various machine learning pur-
poses. Many researchers and commercial enti-

ties have used machine learning algorithms for
speech recognition, noise filtering, and audio com-
pression. Various machine learning project have
used Auto-Encoders to de-noise images, speech,
and other types of signals with minor noise. This
project intends to use a similar architecture to
isolate specific instruments from multi-instrument
audio files, thus treating non targeted instruments
as ”noise”. In doing so, the basic structure of au-
dio data must be understood.

Digital audio data is a digital waveform repre-
sentation of analog waveforms. Audio files have
a sampling rate, or the number of samples taken
per second of an analog waveform. An integer
represents the amplitude of that analog waveform
at each sample taken, creating a digital represen-
tation of the waveform. The sampling rate can
be thought of as pixel resolution for images. To
demonstrate this process, Figure[1] depicts a sine
wave which is acting as the analog waveform.
Digital waveforms representing the analog wave-
form with two separate sampling rates are plotted
in in Figure[2a] and Figure[2b]. As the sampling
rate is increased, then the digital waveform be-
comes a more accurate representation of the ana-
log waveform.

For modern audio files, the most widely ac-
cepted sampling rate is 44.1kHz. The reason
for this lies in a fundamental property called the
Nyquist frequency. The Nyquist Frequency is the
highest frequency a digital waveform can capture
from an analog, which is equivalent to:

fN =
γ

2
(1)

where fN is the Nyquist Frequency and γ is the
sampling rate. This is because the digital conver-
sion process must be able to capture two samples
per sine wave to accurately represent the wave-
form. The reason audio files have a sampling rate



Figure 1: Analog Waveform

of 44.1kHz is because the range of human hear-
ing goes from approximately 20Hz-20,000Hz. Us-
ing the Nyquist frequency formula, the minimum
sampling rate needed to capture the edge of human
hearing at 20,000Hz would be γ = 40,000Hz. The
additional 4,100Hz is for additional detail in the
higher frequency ranges.

Another important feature is the bit depth of au-
dio files. The bit depth is the number of integers
that can be used to represent the amplitude of the
wave digitally. This can be considered the ”dy-
namic range” of the audio file. The greater the bit
depth, the greater difference in decibels (dB) be-
tween the loudest and quietest points in the audio.
Bit depth can be represented by:

n = 2β (2)

where n is the number of integers from (−n, n)
available to express the waveform and β being the
bit depth. Generally β is 16 or 24 for modern au-
dio files.

Once the digital waveform is constructed, the
data is packed into an audio file (.wav, .mp3) as
an integer array. This project extracts the integer
arrays from the audio file to be processed for the
machine learning networks.

2 Data Processing

The initial task of the project was to be able to
identify drum audio samples from their audio data
using a Convolutional Neural Network (CNN).
The reason for this was to test the validity of the
data set. Audio recognition with a CNN has al-
ready been done successfully by many research
groups, so this process was to ensure my data

(a) 0.5Hz Sampling Rate

(b) 2Hz Sampling Rate

Figure 2: Sampling Rates for Digital Waveforms

set was strong enough for machine learning algo-
rithms to process. A CNN is a machine learning
network used for pattern recognition within data
samples through a process called convolutions. In
this process, the network has a window of deter-
mined size that parses through the entire sample
and attempts to find ”local” features within a data
sample. This can be seen in Figure[3], where the
red box represents the window size on the initial
input array on the left. These features are then
collected into a new layer called a Convolutional
Layer, where the process can then be repeated onto
that layer. This can be done as many times as
needed until the network can identify enough fea-
tures to classify the data properly.

For the CNN to work properly, the audio data
needed to be samples of uniform dimensions
from similar sources. For this project, I com-
piled around thirty different songs from the Hip-
Hop/Rock/R&B with open source individual in-
strument stems from CambridgeMT.These audio
files were picked to be the data files because of
their rich and consistent percussive content, allow-
ing for more drum samples per song than other



Figure 3: 1-Dimensional CNN Architecture

genres. These files were converted into integer ar-
rays of audio data for further data processing.

The most significant information for identifica-
tion in an instruments waveform is known to be
the Attack, Decay, Sustain, and Release (ADSR)
Envelope depicted in Figure[4]. The ADSR illus-
trates the acoustic differences in multiple instru-
ments even when playing the exact same pitch (or
frequency). For a drum sample, the ADSR en-
velope is approximately 200 milliseconds, as de-
picted in Figure[5a].In the 200ms sample, the at-
tack, decay, sustain, and release of the drum hit
can all be clearly identified. For other instruments
such as a Synth in Figure[5b], the 200ms sam-
ple is not enough to contain their ADSR envelope.
Therefore, 200ms was the choice of data sample
size to isolate drum ADSR envelopes.

Figure 4: ADSR Envelope

As explained before, the sampling rate of audio
files is γ = 44.1kHz, which translates to 44.1 ∗ 103
integers of data per second. For 200ms there are
8820 integer samples of audio data. These samples
were converted into integer arrays and normalized
from (−1, 1) to eliminate differences between the
bit depth of different samples. 8000 samples, half
of them drum samples and the other half a mix-
ture of guitar, keys/synth, and bass, were fed to
the CNN.

This initial testing came out very poor with an
accuracy of 51%, a score a human could score sig-
nificantly higher on given the same data set. The

(a) Drum Hit at 200ms

(b) Synth at 200ms

Figure 5: ADSR Envelopes for Drum and Synth

problem with this data was that the CNN was over
fitting the data, as there was way too much of it.
Since the CNN looks at ”local” data within the
samples, the CNN was fitting too many patterns
that were not specific to the drum samples vs. not
drum samples. To fix this issue, the data was then
averaged in bins of 10 and sent again to the CNN
for training. This testing came back with an ac-
curacy of 83%, much higher than previous testing,
but still not good enough.

To improve the accuracy further the data needed
a process that would capture the significant in-
formation in a lower dimension data set. A real
Fourier Transform was done on the data, giving
its amplitude as a function of frequency and com-
pressing the data by a factor of 2 (only real parts of
the Fourier Transform were taken) as seen in Fig-
ure [6].This data used as training data for the CNN
resulted in a 60% accuracy, which again was due
to over fitting. The Fourier Transform data was
averaged with a binsize of 10 as seen in Figure[7].
When this was sent to the CNN an accuracy of
99.7% was achieved.

Thus drum samples compared to not drum files



Figure 6: Original Drum Sample with Fourier Trans-
form

Figure 7: Binned FFT binsize=10

could be identified by the CNN at an accuracy of
99.7% with the binned Fourier Transform data.
This ensured the validity of the data set for ma-
chine learning purposes and allowed the project to
progress to the next step, the Auto-Encoder.

3 Auto-Encoder

A traditional Auto-Encoder is used for data com-
pression. An Auto-Encoder takes in a data set
of specific dimensions and learns how to com-
press that data into a smaller dimension represen-
tation of that data. This part of the process in the
data ”encoder”. The second part of the process
is teaching the network to reconstruct the origi-
nal data from its encoded form, also known as the
data ”decoder”. This process can be seen in Fig-
ure[8] below, where the Auto-Encoder is using the
MNIST image data set. In this case, the recon-
structed output data is compared to the input data
and a loss value is given based on the error in the
reconstructed output. As you can see in Figure[8],
the reconstructed image of a two is slightly dif-

ferent than the original input, but still recognize-
able. The system keeps training until the loss on
the reconstructed output is minimized. This archi-
tecture has many uses including data dimension-
ality reduction and anomaly detection. However,
re-configuring this architecture makes the Auto-
Encoder capable to de-nosing.

Figure 8: Auto-Encoder Architecture

A de-noisng Auto-Encoder architecture is one
in which the input data is ”noisy”, and the out-
put data is the ”de-noised” data. In this neural ar-
chitecture, the Auto-Encoder learns to encode the
noisy input and then decode it into its de-noised
form. The reconstructed output is compared to
the pure de-noised data and a loss value is given
based on the error. The network keeps training to
minimize this loss value and in turn create a suc-
cessfully de-noised data set. For the audio data,
this project looks at two separate methods for de-
noising. The first of which is using the traditional
Auto-Encoder architecture where the training data
is reconstructing drum samples, and then using the
model on mixed audio samples with drums for de-
noising. The second of which is training the de-
noising architecture with mixed samples as the in-
put and isolated drum samples as the output. The
two are explained in detail below.

3.1 Traditional Auto-Encoder: Data Testing

The first Auto-Encoder setup is the traditional en-
coder and decoder with the same input and output
data used for training. The model will then predict
on data sets that are of mixed instrument samples
of the same length to see if the Auto-Encoder only
reconstructs the drum data within the mixed sam-
ples.

For the traditional Auto-Encoder setup, the first
neural architecture tested was made up of only two
Dense layers, one for the encoder and one for the
decoder. The first Dense layer had the number of
nodes equivalent to the encoded length, and the
second layer had the number of nodes equivalent
to the input data length. With this very simple
architecture and a Sigmoid and tanh optimization



functions this network alone was able to reach a
loss value of 0.002 (with Mean Squared Error as
the loss function). In testing this model, the level
of dimension reduction was extremely important
to the success of the network. Looking at Equa-
tion (3) below:

µ =
Le
Li

(3)

where Le is the encoded length, Li is the in-
put data length, and µ is the reduction factor, plot-
ted in Figure[9] is the loss value as a function of
µ. As seen in the figure, the loss reached a min-
imum of 0.002 at µ ≈ 0.5, which translates to
a data reduction from 8820 to 4410. This pro-
cess demonstrated the optimal compression for the
Auto-Encoder was µ=0.5.

Figure 9: Loss as a function of µ

To actually look at what this data compres-
sion means, I have plotted in Figure[10] the com-
pressed representation of the data samples the
Auto-Encoder has created. As seen in the figure,
the compressed input is not clearly identifiable to
the human eye, but the Dense layers have encoded
this input to be decoded back into the original
waveform. Looking at the encoded representation
gives a little insight on to the compression algo-
rithms of the neural network. One interesting thing
about the encoded data is that all the values are
greater than zero with a range of (0, 1), whereas
the original waveform has a range of floats from
(0, 1).

The reconstruction of the wave forms are plot-
ted in Figure[11]. As you can see they are not per-
fectly reconstructed even with a loss on the scale
of < 1e−4 but they are quite close. The first of
two major error sources can be seen in the max-
imum amplitude, where the reconstructed wave-

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0
Encoded Representation

Figure 10: Encoded Waveform with µ=0.5

forms do not get back to the original maximum
value of 1. The next greatest source of error are in
the values (−0.1, 0.1), demonstrating that the net-
work has trouble discerning periods of silence and
minimal acoustic energy.

0 2000 4000 6000 8000
Sample Frame

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

Original

0 2000 4000 6000 8000
Sample Frame

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Am
pl

itu
de

Reconstructed

Figure 11: Original and Reconstructed Waveform

To improve upon this initial model, I changed
the Auto-Encoder two a convolutional architecture
to fix the errors of the Dense network. This net-
work consisted of four convolutional layers, two
for encoding and two for decoding. Each layer
had 64 filters and a convolutional window size of
10 integers. In a traditional Auto-Encoder there
is data reduction, however in this system the data
was being encoded with dimension (8820, 64) to



then be decoded back to the dimensions (8820, 1).
This is because the Pooling layers meant for data
reduction were losing too much local information
in the waveforms and the network was not able to
reconstruct them well. Plotted in Figure[12] are
the reconstructed waveforms from the Convolu-
tional Auto-Encoder which reported a validation
loss of ≈ 1 ∗ 10−4. As seen in the plots the wave-
froms are practically identical with minimal error.
The localised focus of the CNN was able to fix
the errors in the Dense network and reconstruct the
waveforms accurately.

Figure 12: Reconstructed Waveform: CNN

4 De-Noising Auto-Encoder

Since the Traditional Auto-Encoder model was
very successful, the first test at De-Noising was to
run a mixed data set through the old model. This
meant that the previous model would predict on
mixed audio samples such as drum and bass to-
gether and return the former isolated. However,
this test was not successful as the model recreated
the entire waveform with no noise filtering. The
idea was that a network trained on recreating drum
waveforms may ignore the frequency content that
did not resemble drums, however this was not the
case.

Therefore, a new model and data structure were
made to train a new De-Noising Auto-Encoder
based on previous models made. This neural
architecture would take in mixed audio samples
of drums with all other instruments and learn to
recreate only the drum track isolated. As seen
in Figure[13], the input and output are frame the
same 200ms frame of music, one isolated as a
drum sample and the other as the fully mixed in-

strument audio. This data architecture teaches
the network to treat all instrument signals besides
drums as noise to reproduce the isolated drums.

Figure 13: De-Noise Auto-Encoder Data Structure

The neural architecture for this system was the
same two convolutional layers as the previous
model now applied to de-noising. The results are
plotted in Figure[14]. As seen in the figure, the
de-noised signals achieved a loss value worse than
that of the previous model. The De-Noising Auto-
Encoder achieved a loss value of ≈0.03, still im-
pressive but two orders of magnitude higher than
the previous model. Further testing on varying
neural architectures needs to be done to improve
the model.

5 Future Research

Once this process is perfected, the same process
will be extrapolated to expand the neural networks
capabilities to more instruments. It is not known
yet whether it will be multiple models or a one
model de-noiser, but based on this research it is
more likely the process would involve a model
for each instrument. Also data architecture may
have to be varied in order to train new models,
most likely adjusting the data sample size to in-
clude each instruments ADSR envelope. Once
these models are developed it is planned to con-
vert these models into a full software package for
users to apply on audio of their choosing.



Figure 14: De-Noise Auto-Encoder Results

6 Conclusion

Overall the project has much more work in per-
fecting the de-noise algorithms, however thus far it
has shown the capabilities of machine learning for
de-noising signals. This is a very powerful prop-
erty that can be utilized in many other areas of
signal processing other than audio. In the music
world, this would be an extremely powerful soft-
ware for music composition through revolutioniz-
ing sampling techniques.

7 Acknowledgements

This research was done in conjunction with the
principles and directives of the Innovation Lab of
the GW Physics Department. Without the support
of Physics Department and the Music Department
this project would not have been possible. Special
thanks to Alan Nash, Sylvain Guiriec, and Dou-
glas Boyce on their continued support in this re-
search process.


