September 22, 2017 Mr. Dan Janniello, LEED AP The George Washington University 2025 F Street NW, Suite 200 Washington, DC 20052 djanniel@email.gwu.edu ECS Project No. 47:2199-A Reference: Indoor Air Quality Monthly Testing Services, Corcoran Gallery of Art, 500 17th Street NW, Washington, DC - August 2017 Dear Mr. Janniello: ECS Mid-Atlantic, LLC (ECS) is pleased to provide George Washington University (GWU) with the results of monthly Indoor Air Quality conducted in August 2017 at the abovereferenced property. # **Methodology** The testing parameters and acceptable limits were determined in collaboration with GWU. From the suitable methods available, ECS selected the following sample methods based on sampling feasibility, schedule, cost objectives, and prior history of performance in similar projects. ### PROPOSED SAMPLE METHODS | Testing
Parameter | Method | Analysis | Reporting
Time | Sample
Locations | Acceptable
Limit | |----------------------|----------------------------|--|-------------------|-----------------------------|------------------------------| | Carbon
Monoxide | Direct Read
Instrument | Electrochemical sensor | Immediate | Target Indoors,
Outdoors | 9 parts per
million (ppm) | | Carbon Dioxide | Direct Read
Instrument | Non-Dispersive
Infrared Detector | Immediate | Target Indoors,
Outdoors | 1,000 ppm | | Formaldehyde | Assay 571
passive badge | NIOSH 2016, high performance liquid chromatography | 24 Hours | Target Indoors,
Blank | 0.027 ppm | | Testing
Parameter | Method | Analysis | Reporting
Time | Sample
Locations | Acceptable
Limit | |-----------------------------------|-------------------------------------|-------------------------------|-------------------|-----------------------------|--| | Volatile Organic
Compound Scan | Assay 521
passive badge | OSHA 7, Gas
Chromatography | 24 Hours | Target Indoors,
Blank | Reference
specific
parameters
tested* | | Mold | Non-viable
Spore Trap
Sampler | Optical Microscopy | 24 Hours | Target Indoors,
Outdoors | Compare to
Outdoors | | Respirable Dust | Indoor Air
Sampler | NIOSH 0600 | 24 Hours | Target Indoors | 0.150 mg/m3
(EPA NAAQS
PM 10) | | Silica Dust | Indoor Air
Sampler | NIOSH 7500 | 24 Hours | Target Indoors | 0.025 mg/m3
(OSHA Action
Level) | *CARB RELs = California Air Resources Board Recommended Exposure Limit, acute or 8-hour ECS collected air samples for fungal spore count analysis. For air sample collection, a high volume sampling pump and air cassettes were utilized in sampling for airborne fungal spores, hyphal fragments, insect fragments, and pollen. Analytical background levels on the slide of skin fragments, fibers, and other debris are also reported. Samples were collected with an air flow of 15 liters/minute verified by a pre-calibrated rotameter for 5 minutes. Samples collected were shipped to Scientific Analytical institute, Inc. (SAI) located in Greensboro, North Carolina for analysis. SAI is an AIHA (American Industrial Hygiene Association) EMLAP (Environmental Microbiology Laboratory Accreditation Program) accredited laboratory. The samples were analyzed for total spore concentrations in accordance to the laboratory's quantification methods. The analytical results and chain of custody are attached in the Appendix of the report. Formaldehyde and Volatile Organic Compound (VOC) sampling was conducted using passive indoor air quality samplers. Formaldehyde samples were analyzed by High Performance Liquid Chromatography using NIOSH Method 2016 by Assay Technology in Boardman, Ohio, an independent AIHA Accredited Laboratory. The VOC samples were analyzed by Gas Chromatograph in general accordance with OSHA Method 7 by Assay Technology. The VOC scan includes a panel of 25 common solvents, including: Acetone, Benzene, 1-Butanol, Butyl Acetate, Chloroform, Cyclohexanone, Ethyl Acetate, Ethyl Alcohol, Ethylbenzene, Heptane, Hexane, Isopropyl Alcohol, Methyl Ethyl Ketone, Methyl Isobutyl Ketone, Methyl Methacrylate, Methylene Chloride, Naphthalene, Perchloroethylene, 4-Phenyl Cyclohexene, Styrene, Tetrahydrofuran, Toluene, 1,1,1-Trichloroethane, Trichloroethylene, and m-, o-, and p-Xylenes. The Respirable Dust and Crystalline Silica samples were collected using indoor air sampling pumps fitted with pre-weighed poly-vinyl chloride filters. Respirable dust was determined by Corcoran Gallery of Art ECS Project 47:2199-A September 22, 2017 Page 3 gravimetric analysis by NIOSH Method 600 by SAI in Greensboro, North Carolina, an independent AIHA Accredited Laboratory. Crystalline silica concentrations was measured by X-Ray diffraction analysis using NIOSH Method 7500. Environmental conditions, including temperature and relative humidity (RH), were recorded using a Fluke brand meter. The purpose of these measurements was to evaluate if interior temperature and RH were sufficient to support mold growth and also to measure general indoor comfort parameters related to temperature/relative humidity. The relative humidity is the ratio of the amount of moisture contained in the air to the maximum amount of moisture the air can contain at a specific temperature. Additionally, a calibrated Air Quality Meter was used to collect measurements of carbon dioxide and carbon monoxide as general indicators of overall IAQ. Sample locations were identified by GWU representatives as areas of interest. Chemical and biological sampling was performed in occupied areas of the facility. Biological samples were also collected outdoors for comparison purposes. As required by the sample method(s), blank samples were also submitted with each set of chemical samples. ### Results #### Mold Fungal spore-trap air samples were collected from the eight locations within the subject building identified by GWU representatives as areas of interest. Two representative exterior samples were collected for comparison. The appended table summarizes the results of sample analysis reported in spore counts per cubic meter of air. The analytical results of the eight samples indicate that the total concentrations of airborne fungal spores detected were less than spore concentrations reported on the exterior samples. In addition the fungal genera identified were generally comparable with outdoor genera detected. There are currently no accepted regulatory standards or guidelines with respect to acceptable fungal levels inside buildings. It is important to note however that spore trap measurements can fluctuate rapidly and the readings reported should not be used as a definitive indication that mold and or health hazards related to mold are present or absent. #### Carbon Monoxide and Carbon Dioxide Carbon monoxide and carbon dioxide were measured onsite utilizing a calibrated Air Quality meter. No readings exceeded the US EPA NAAQS or limits recommended in the Occupational Safety and Health Administration (OSHA) Technical manual for carbon monoxide or carbon dioxide respectively. The appended table summarizes the results Corcoran Gallery of Art ECS Project 47:2199-A September 22, 2017 Page 4 ### Formaldehyde No formaldehyde levels above the laboratory detection limit or the 27 parts per billion (ppb) reference criteria (reference US Green Building Council – LEED Standard) were found. ## Volatile Organic Compounds Twenty-one (21) of the 25 volatile organic compounds (VOCs) analyzed for were not detected in any of the VOC samples collected. The remaining four VOCs are discussed below. Acetone was detected in five locations; however, none of the levels exceeded the Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Level for Acetone [(13,000 parts per million (ppm)]. The detections were identified in the following locations: - Sample Location 1 Sub-Basement Wood Shop (0.059 ppm, 0.140 μ/m³) - Sample Location 3 B112 Student Work Spaces (0.062 ppm, 0.147 μ/m³) - Sample Location 4 B130 Screen Printing Studio (0.39 ppm, 0.927 μ/m³) - Sample Location 5 Faculty Suite 133 (0.25 ppm, 0.594 μ/m³) - Sample Location 7 Central Portion of 2nd Floor Main Atrium (0.030 ppm, 0.071 μ/m³) Toluene was detected in two locations (Sample Location 1 at 0.121 μ/m^3 and Sample Location 5 at 0.452 μ/m^3); however, neither level exceeded the California Office of Environmental Health Hazard Assessment (OEHHA) Acute Reference Exposure Level (REL) for Toluene of 37,000 μ/m^3 . Isopropyl Alcohol was detected in one location, Sample Location 2 – B109 Basement Etching Studio, at 0.246 μ/m^3 (0.10 ppm). However, the level did not exceed the California OEHHA Acute REL for Isopropyl Alcohol of 3,200 μ/m^3 . Heptane was detected in two locations (Sample Location 4 at 0.011 ppm and Sample Location 5 at 0.012 ppm); however, neither level exceeded the NIOSH REL (85 PPM) or ACGIH TLV (400 PPM) respectively. It should be noted, acetone is commonly found in office products and art supplies. In general, it is common to find some level of chemical compounds, especially VOCs, in the indoor air from a variety of normal office and home products such as inks, toners, and cleaners. ### Respirable Dust and Respirable Silica No respirable dust levels above the laboratory detection limit or the 150 μ/m^3 ambient exposure limit (reference EPA NAAQS) were found. Five of the eight respirable silica samples collected were below the laboratory detection. Three samples were found to Corcoran Gallery of Art ECS Project 47:2199-A September 22, 2017 Page 5 contain detectable levels of respirable silica at levels ranging from 7.4 μ/m^3 (Sample Location 1 – Sub-Basement Wood Shop) to 18 μ/m^3 (Sample Location 3 – B112 Student Work Spaces); however, all eight samples analyzed were below the 25 μ g/m³ Action Level under OSHA. ## **Conclusions** Based on the results of the indoor air quality sampling conducted in August 2017, no indoor air quality concerns were identified. Respectfully, ECS MID-ATLANTIC, LLC Brian Wasserstein **Environmental Project Manager** Christopher Chapman Director of Industrial Hygiene Attachments: Results Tables Laboratory Results Limitations T:_e-projects\2101-2200\2199-A IAC\August 17 Summary Letter\August Results Summary Letterdocx